Introduction

The HFA1149 is a high speed, low power current feedback amplifier with output Enable/Disable capability. The macromodel for the HFA1149 is PSPICE (registered trademark of MicroSim Corp.) compatible, and may be compatible with other simulation programs as well. The model file is in ASCII format and may be viewed/edited with any text editor. For this model to run properly in PSPICE be sure to set ITL4 = 100 and turn on STEPGMIN; otherwise, convergence errors may occur.

All models require a trade-off between accuracy and complexity (simulation time). Intersil's models emulate the nominal performance of a typical device, and are designed to match the typical performance curves in the device data sheet.

SPICE simulations should not be considered a substitute for breadboarding a circuit; rather, they should be used to select preliminary component values and to verify the validity of a design approach.
Do not rely on simulations to predict device performance when deviating from the operating conditions specified in the data sheet (e.g., just because the model works with $\pm 1 \mathrm{~V}$ supplies, don't assume that the actual amplifier does). Instead, refer to the data sheet performance curves, or call the factory for assistance (321-724-7143).
The HFA1149 model is configured as a subcircuit for easy incorporation into larger circuit files. When using PSPICE, call a subcircuit from the top level circuit file by adding a .LIB statement to point to the file containing the subcircuit (e.g. .lib c:\modelslhfa1149.cir), and by including a subcircuit call of the following form:

| | | | | | | model | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| xname | + IN | - IN | V+ | V- | DIS | THR | POL OUT | name |

Note that the node order in the subcircuit call follows the industry standard, and the order is also documented in the comment section at the beginning of the model file.

Model Description

The macromodel schematic is shown in Figure 1, and the PSPICE listing for the macromodel follows. The HFA1149 model is basically the HFA1109 amplifier model with circuitry around it to implement the output Enable/Disable function.

The model topology consists of three main functional sections: a buffer between the two input pins, an output section between the inverting input pin and the output pin, and an enable section.

The input buffer section is a unity gain buffer with additional components added to model the critical characteristics of the actual buffer. Of these additional components, some are used to model both the slew limiting of the inverting input and the fractional step feed-through from the noninverting input to the inverting input. Other elements model the voltage and current limiting of the inverting input. The bias current of the non-inverting input and the high frequency voltage gain are also accounted for in the input buffer section.

The output section is a transimpedance amplifier constructed from four stages: current probe, mid stage, frequency transfer, and output drive. The current probe stage monitors the current through the inverting input pin and also models the input offset voltage. The mid stage is used for the bias current of the inverting input and for power supply gains. The frequency transfer block consists of two poles and two zeros for modeling the high frequency openloop transimpedance gain. The output drive stage accounts for several characteristics including: the output slew limits and resulting transimpedance gain bandwidth product, the saturation delay times, and the voltage and current limiting at the output.
The enable section accurately models the turn-on/turn-off times, disabled I_{Cc}, and off-isolation. This section operates according to the voltage level at the disable input pin which controls the input/output impedance and the Enable/Disable time of the amplifier. The internal bias current of the input buffer section is also set by the enable section shown at the bottom of Figure 1C. As a result, high impedance states are achieved at the two input pins whenever the amplifier is disabled. The polarity function was implemented with the circuitry at the bottom of Figure 1B and the threshold pin functionalities were modeled with the circuitry at the top of Figure 1B.
In addition to the three main functional sections, smaller constructs and individual components are used to model other important amplifier characteristics. Specifically, one section is used to capture the change in the voltage limits of the output as a function of the current through the inverting input.

FIGURE 1A. HFA1149 MACROMODEL SCHEMATIC

FIGURE 1B. HFA1149 MACROMODEL ADDITIONAL SUPPORT CIRCUITS

FIGURE 1C. HFA1149 MACROMODEL ADDITIONAL SUPPORT CIRCUITS

FIGURE 1D. HFA1149 MACROMODEL INPUT STAGE

FIGURE 1E. HFA1149 MACROMODEL OUTPUT STAGE

FIGURE 1F. HFA1149 MACROMODEL ADDITIONAL SUPPORT CIRCUITS

HFA1149 SPICE Macro Model Listing

* Copyright (C) 1997 Intersil Corp.
* Rev. 2/24/97, Be sure to set ITL4=100 and turn on STEPGMIN for PSpice to simulate properly.
*Subcircuit Call Order: +IN -IN V+ V- DISABLE THRESHOLD POLARITY OUT
.SUBCKT HFA1149 + - V+ V- DIS_ THR POL OUT
X_U10 $12 \mathrm{~V}+\mathrm{V}$ - 3 HFA1109AMP
S_S5 5 OUT in2 4 Switch2
RS_S5 in2 4 1G
S_S6 7-in2 6 Switch2
RS_S6 in261G
V_V38 40.5
V_V39 60.05
S_S8 928 in 2 Switch2
RS_S8 8 in2 1G
V_V42 802.0
S_S9 11010 in 2 Switch2
RS_S9 10 in 2 1G
V_V43 1002.0
D_D1 1213 Dlow
V_V45 140.5
D_D2 1512 Dlow
D_D3 1416 Dlow
E_EAMP1 170 VALUE $=\left\{\mathrm{V}(18,19)^{*} 1\right\}$
D_D4 2021 Dlow
S_S13 35 in2 22 Sout4
RS_S13 in2 22 1G
V_V52 220.1
V_V54 230.5
S_S17 72 in2 23 Sout4
RS_S17 in2 23 1G
V_V59 240.5
I_I1 0 V+ DC 6.6 mA
I_I2 0 V-DC -6.6mA
R_R40 93250
R_R42 112590
R_R43 1318 13k
C_C11 1418 5p
R_R44 1418 100k
C_C12 1815 1p IC=0
R_R45 151810
R_R46 16181
R_R49 in2 2110
R_R50 in2 0 1.5k
C_C17 0 in2 $5 p$
R_R51 2418 10e6
C_C10 OUT 5 .025p
C_C18 2-.025p
G_G2 $\quad 0 \mathrm{~V}+120-1.32 \mathrm{e}-3$
G_G3 0 V-12 0 1.32e-3
E_SUM2 190 VALUE $\left\{.291^{*} \mathrm{~V}(26)+.079^{*} \mathrm{~V}(27)+.632^{*} \mathrm{~V}(\mathrm{THR})+\mathrm{V}(28)\right\}$
V_V73 280-1.6
S_S18 225290 Switch6
RS_S18 2901 G
S_S19 3031 POL 0 Sdisable
RS_S19 POL 0 1G
S_S20 333432 POL Sdisable
RS_S20 32 POL 1G
E_SUM5 120 VALUE $\{V(30)+\mathrm{V}(33)\}$
R_R68 033 1k
R_R69 030 1k

HFA1149 SPICE Macro Model Listing (Continued)

V_CONST2	320 DC 3.000
E_GAIN1	350 VALUE \{1 * V(DIS_) \}
R_R71	DIS_ V+ 50k
R_R72	0 DIS_ 5e6
R_R73	POL V+ 50k
R_R75	THR 3650 k
V_V84	3603
R_R76	0 THR 5e6
R_R77	0 POL 5 e6
R_R80	$26 \mathrm{~V}+1$
R_R81	V-27 1
R_R82	0265 e 6
R_R83	2705 e 6
E_EAMP2	370 VALUE $=\left\{\mathrm{V}(35,19)^{*}-1\right\}$
E_GLIMIT3	340 VALUE $\{\operatorname{LIMIT}(\mathrm{V}(37) * 50,0,5)\}$
R_R84	0341 k
E_GLIMIT2	200 VALUE $\left\{\operatorname{LIMIT}\left(\mathrm{V}(17)^{*} 50,0,5\right)\right\}$
E_ABS4	290 VALUE $\{\operatorname{ABS}(\mathrm{V}(1))\}$
R_R86	+11
R_R87	1010 e 6
E_EAMP4	380 VALUE $=\left\{\mathrm{V}(35,19)^{*} 1\right\}$
E_GLIMIT5	310 VALUE $\{\operatorname{LIMIT}(\mathrm{V}(38) * 50,0,5)\}$
.model Dlow D N=. 01	
.model Switch6 VSWITCH Roff=300 Ron=1 von=1.0 voff=1.1	
.model Sdisable VSWITCH von=2 voff=1	
.model Sout4 VSWITCH Ron=. 1 Roff=10k von=3.5 voff=. 1	
.model Switch2 VSWITCH Roff=10e6 Ron=. 1 von=. 2 voff=. 1	
.ENDS HFA	A1149

.SUBCKT HFA1109AMP 106107109110108

L200 111107 +1.60000000E-05
R200 $111107+1.18000000 \mathrm{E}+02$
C200 107111 +1.30000000E-12
L100 $101850+5.00000000 \mathrm{E}-07$
R100 $101106+4.50000000 \mathrm{E}+03$
C100 1010 +3.1000000000E-13
R850 10685075
VMI $111112+0.00000000 \mathrm{E}+00$
GINIH 01131090 1M
R1IH 1130 1K
C1IH 1130 +1.59159637E-13
R2IH 1140-1.00000000E+03
RY2IH $114115+1.00000000 \mathrm{E}+03$
C2IH 1150 +4.82301931E-11
G2IH 01141130 -1.00000000E-03
GOUTIH $11601140-1.00000000 E+00$
RPGIH 11601
GINIL 01171100 1M
R1IL 1170 1K
C1IL 1170 +1.59159637E-13
R2IL 118 0-1.00000000E +03
RY2IL $118119+1.00000000 \mathrm{E}+03$
C2IL $1190+8.37682301 \mathrm{E}-11$
G2IL 01181170 -1.00000000E-03
GOUTIL $12001180-1.00000000 \mathrm{E}+00$
RPGIL 12001
EVC 121112 POLY 41060111011601200 -2.76409908E-03
$++2.23336645 \mathrm{E}-04+2.23336645 \mathrm{E}-04+8.08400638 \mathrm{E}-05-5.27513353 \mathrm{E}-0400$
$+-7.70216445 \mathrm{E}-06+7.70216445 \mathrm{E}-060-7.70216445 \mathrm{E}-06+7.70216445 \mathrm{E}-06$

HFA1149 SPICE Macro Model Listing (Continued)

$++7.70216445 \mathrm{E}-060-7.70216445 \mathrm{E}-06$
CMI $1110+1.00000000 \mathrm{E}-15$
FPM $1220 \mathrm{VMI}+1.00000000 \mathrm{E}+00$
DMP 122123 DIM
DMM 124122 DIM
.MODEL DIM D IS=1E-16 N=. 001
GCC 1220 POLY $41060111010901100+6.58458515 \mathrm{E}-06+4.90772982 \mathrm{E}-07$
$++4.90772982 \mathrm{E}-07-1.08867981 \mathrm{E}-07+1.09041394 \mathrm{E}-06 \quad 00+1.74372872 \mathrm{E}-08$
$+-1.74372872 \mathrm{E}-080+1.74372872 \mathrm{E}-08-1.74372872 \mathrm{E}-08 \quad-1.74372872 \mathrm{E}-080$
++1.74372872E-08
VMP 12300
VMM 01240
FMI 0103 POLY 2 VMP VMM $0-9.00000000 \mathrm{E}-03+9.00000000 \mathrm{E}-03$
RT $1030+1.00000000 \mathrm{E}+00$
GPC 0103 POLY $2109011000+0.00000000 \mathrm{E}+00+0.00000000 \mathrm{E}+00$
GINA 01251030 1M
R1A 1250 1K
C1A 1250 +1.59159637E-13
G2A 01261250 1M
R2A 1260 1K
C2A $1260+5.89480137 E-14$
G3A 01271260 1M
R3A 1270 1K
C3A $1270+3.97899093 E-15$
R4A $1280+1.00000000 E+03$
RY4A 128 129-1.00000000E+03
C4A $1290+2.65266062 \mathrm{E}-14$
G4A $01281270+1.00000000 \mathrm{E}-03$
R5A $1300+1.00000000 E+03$
RY5A 130 131-1.00000000E+03
C5A $1310+2.27370910 \mathrm{E}-14$
G5A $01301280+1.00000000 \mathrm{E}-03$
GI6A $01321300+2.00000000 \mathrm{E}-03$
R6A $1320+1.00000000 \mathrm{E}+03$
C6A $1320+5.82692545 E-14$
G6A $01321330-1.00000000 \mathrm{E}-03$
GY6A 013313201 M
CY6A $1330+3.39618104 \mathrm{E}-13$
RY6A 1330 1K
RO6A 0134 1e9
R7A $134135+5.02412563 E+05$
GI7A $01341330+1.99000000 \mathrm{E}-06$
C7A $134135+4.28082941 \mathrm{E}-14$
G7A $01351360-1.00000000 \mathrm{E}-03$
GY7A 01361350 1M
CY7A $1360+1.08077511 \mathrm{E}-14$
RY7A $1360+1.00000000 E+04$
GZ7A 01371340 -1.00000000E-06
RZ7A 137 0-1.00000000E+06
RC7A 1371381000001
CZ7A $1380+2.15074248 \mathrm{E}-14$
GOUTA $10501370-1.00000000 \mathrm{E}+00$
GRD $10201050+4.27868630 E+00$
GINOH 01391090 1M
R1OH 1390 1K
C1OH $1390+1.59159637 \mathrm{E}-13$
GOUTOH $14001390-1.00000000 \mathrm{E}+00$
RDPH 14001
GINOL 01411100 1M

HFA1149 SPICE Macro Model Listing (Continued)

R1OL 1410 1K
C1OL $1410+1.59159637 \mathrm{E}-13$
GOUTOL $14201410-1.00000000 \mathrm{E}+00$
RDPL 14201
G2P 0105 POLY 2140014200 +1.38629436E-07 +1.38629436E-07
GRDP 1020 POLY $2140014200-2.20878759 \mathrm{E}+00-2.20878759 \mathrm{E}+00$
R2 $1050+3.60673760 \mathrm{E}+06$
CC $105102+1.00000000 \mathrm{E}-14$
RD $1020+7.20000000 \mathrm{E}+00$
RA $102108+1.07000000 \mathrm{E}+01$
DH 102104 DH +1.000000000E+00
DL 100102 DL +1.00000000E+00
.MODEL DH D IS=+1.99173432E-14 N=. 2
.MODEL DL D IS=+1.28277200E-14 N=. 2
ECC 1040 POLY $210901430-1.19000000 E+0011$
EEE 1000 POLY $211001440+1.25000000 E+0011$
FCC 0143 POLY $1 \mathrm{VMI}+9.96717960 \mathrm{E}-05+1.33000000 \mathrm{E}-01$
RCC 1430 1K
CRC $1430+1.00000000 \mathrm{E}-10$
D55 1430 DLIMVO
FEE 0144 POLY 1 VMI -1.63095844E-04 +1.63000000E-01
REE 1440 1K
CRE 1440 +1.00000000E-10
D66 0144 DLIMVO
.MODEL DLIMVO D N=. 01 IS=1E-20
DP 102145 DCL +1.00000000E+00
EXP 1450 POLY 2102010800 +3.20491434E-01 +6.77833280E-01
DN 146102 DCL +1.00000000E+00
EXN 1460 POLY $2102010800+1.86957037 E-01+8.11038456 E-01$
.MODEL DCL D IS=1E-9 N=1
IPS $109110+9.40000000 \mathrm{E}-03$
GPS $1470102108+9.34579439 E-02$
GH 109147 POLY $1147110+1.61343210 \mathrm{E}-02-3.22686420 \mathrm{E}-02+2.42014815 \mathrm{E}-02$
+-8.06716049E-03 +1.00839506E-03
DPS 147110 DPS
.MODEL DPS D IS=1E-16 $\quad \mathrm{N}=+3.40072108 \mathrm{E}+00$
DVPM 106109 DLIMM
GIPM 1060 POLY $41060111010901100-5.30320265 \mathrm{E}-06+1.02950000 \mathrm{E}-05$
$+-9.70500000 \mathrm{E}-06$-2.95000000E-07 -2.950000000E-07
DVNM 110106 DLIMM
VIPM 1481490
DIPM 106148 DLIMM
DINM 150106 DLIMM
VINM 1491500
CPNM $1490+1.00000000 \mathrm{E}-15$
RINM $106101+1.00000000 E+04$
CINM $1010+9.90000000 \mathrm{E}-14$
GINI 01511060 1M
R1I 1510 1K
C1I $1510+1.90382341 \mathrm{E}-13$
GI2I $01521510+1.12250000 \mathrm{E}-03$
R2l $1520+8.16326531 \mathrm{E}+03$
C21 $1520+9.96948751 \mathrm{E}-14$
G21 $01521530-1.00000000 \mathrm{E}-03$
GY2I 015315201 M
CY2l 1530 +1.61679590E-12
RY2l 1530 1K
G3I 01541530 1M
R3I 1540 1K

HFA1149 SPICE Macro Model Listing (Continued)

C3I $1540+7.76388474 \mathrm{E}-13$
G4I 01551540 1M
R4I 1550 1K
C4I $1550+5.30532124 \mathrm{E}-14$
G5I 01561550 1M
R5I 1560 1K
C5I $1560+5.30532124 \mathrm{E}-14$
R6I 157 0-1.00000000E+03
RY6l $157158+1.00000000 \mathrm{E}+03$
C6I $1580+1.76844041 \mathrm{E}-13$
G6I $01571560-1.00000000 \mathrm{E}-03$
R7I 159 0-1.00000000E+03
RY7I $159160+1.00000000 \mathrm{E}+03$
C7l $1600+8.37682301 \mathrm{E}-14$
G7I 01591570 -1.00000000E-03
R8I $1610-1.00000000 \mathrm{E}+03$
RY8I $161162+1.00000000 \mathrm{E}+03$
C8l 1620 +8.37682301E-14
G8I 0161 159 0-1.00000000E-03
R91 $1630-2.00000000 \mathrm{E}+03$
RZ91 $163164+3.00000000 \mathrm{E}+03$
C91 $1640+5.30532124 \mathrm{E}-14$
G91 $01631610-5.00000000 \mathrm{E}-04$
R101 $1650-2.00000000 \mathrm{E}+03$
RZ10I $165166+3.00000000 E+03$
C10I $1660+5.30532124 \mathrm{E}-14$
G10I $01651630-5.00000000 \mathrm{E}-04$
R111 167 0-2.00000000E +03
RZ111 $167168+3.00000000 E+03$
C11I $1680+5.30532124 \mathrm{E}-14$
G11I 01671650 -5.00000000E-04
R12l $1690-2.00000000 \mathrm{E}+03$
RZ12l $169170+3.00000000 \mathrm{E}+03$
C121 $1700+5.30532124 \mathrm{E}-14$
G12l 01691670 -5.00000000E-04
R131 $1710-2.00000000 \mathrm{E}+03$
RZ13I $171172+3.00000000 \mathrm{E}+03$
C131 $1720+5.30532124 \mathrm{E}-14$
G13I $01711690-5.00000000 \mathrm{E}-04$
R141 173 0-2.00000000E +03
RZ14I $173174+3.00000000 E+03$
C14I $1740+5.30532124 \mathrm{E}-14$
G14I 01731710 -5.00000000E-04
R15I 175 0-2.00000000E +03
RZ15I $175176+3.00000000 E+03$
C15I $1760+5.30532124 \mathrm{E}-14$
G15I 01751730 -5.00000000E-04
R161 177 0-2.00000000E +03
RZ16I $177178+3.00000000 \mathrm{E}+03$
C16I $1780+5.30532124 \mathrm{E}-14$
G16I $01771750-5.00000000 \mathrm{E}-04$
R171 179 0-2.00000000E +03
RZ171 $179180+3.00000000 \mathrm{E}+03$
C171 $1800+5.30532124 \mathrm{E}-14$
G171 01791770 -5.00000000E-04
R181 $1810-2.00000000 \mathrm{E}+03$
RZ18I $181182+3.00000000 \mathrm{E}+03$
C181 $1820+5.30532124 \mathrm{E}-14$
G18I $01811790-5.00000000 \mathrm{E}-04$

HFA1149 SPICE Macro Model Listing (Continued)

```
GOUTI 1830181 0-1.00000000E+00
GPMM 18301840 +1.00200401E+00
RPMM 1830+1.12142857E+11
VSPM 1850+9.64285714E-01
DSPM 183 185 DLIMM
VSNM 0 186 +1.03571429E+00
DSNM 186 183 DLIMM
.MODEL DLIMM D N=0.01
G2M 1870 POLY 2 183018400 +1.00000000E-03 +1.00000000E-03
F2M 1870 POLY 2 VIPM VINM 0 +1.25000000E+02 -1.25000000E+02
R2M 18701
CCM 187 184 +1.78571429E-12
G4M 18401870 1K
R4M 18401
GRDM 0188 1840+1.14652603E-02
RDM 1880 +8.72200000E+01
RAM 188 121 +1.78000000E+00
DHM 188 189 DVM +1.00000000E+00
DLM 190 188 DVM
.MODEL DVM D IS=1E-16 N=.2
ECCM 1890 POLY 1 109 0-2.83000000E+00 1.0
EEEM 1900 POLY 1 1100+2.83000000E+00 1.0
DPM 188 191 DCLM +1.00000000E+00
EXPM 1910 POLY 4 18801210109011000 -5.28714965E+01 +5.38520064E+01
+ +9.74504713E-03 +9.74504713E-03
DNM 192 188 DCLM +1.00000000E+00
EXNM 1920 POLY 2 188012100-8.28974671E+01 +8.38903217E+01
    .MODEL DCLM D IS=1E-20 N=1
FPS O 147 VMI 1
.ENDS HFA1109AMP
```


HFA1149 Macro Model Performance

The model is designed for operation at $\pm 5 \mathrm{~V}$. Beware, the model does not simulate various breakdown conditions such as exceeding the maximum ratings, but it does have input limiting. The model does not include input voltage or current noise, or temperature effects. The poles and zeros of the transimpedance frequency transfer section have been located with great care to insure that the performance for three different gains is matched closely to the curves given in the data sheet. Also, the pole/zero placement insures that the transient response matches that shown in the data sheet.

Intersil Application Note AN9523 titled "Evaluation Programs For SPICE Op Amp Models" was used as a guideline for evaluating the HFA1149 performance. Figure 2 shows the AC transfer function for gains of 2,1 , and -1 . In the gain of two configuration the peaking is 0 dB versus the 0 dB of peaking shown in the data sheet. The gain of two simulated -3 dB bandwidth is 430 MHz compared to the data sheets 450 MHz . This is quite a good correlation between the model and the data sheet. Similarly, the gains of 1 and -1 have -3 dB bandwidths of 325 MHz and 390 MHz which closely match the 330 MHz and 375 MHz listed in the data sheet. The large signal responses for gains of 1 and 2 are shown in Figure 3 and the response for a gain of -1 is shown in Figure 4. Figure 3 shows an $1150 \mathrm{~V} / \mu \mathrm{s}$ gain of 2
slew rate versus the data sheets $1100 \mathrm{~V} / \mu \mathrm{s}$, and it shows a $600 \mathrm{~V} / \mu \mathrm{s}$ gain of 1 slew rate versus the data sheet's $575 \mathrm{~V} / \mu \mathrm{s}$. Figure 4 shows a $2900 \mathrm{~V} / \mu \mathrm{s}$ slew rate for the gain of -1 versus the data sheet's $2600 \mathrm{~V} / \mu \mathrm{s}$. Again the correlation between the model and the data sheet is quite good. The small signal pulse responses are shown in Figures 5 and 6. The rise time, fall time, and overshoot can be read off these waveforms. Figure 7 is a graph of the offisolation which correlates closely to the data sheet's -54 dB at 30 MHz and -64 dB at 10 MHz . Figures 8 and 9 correspond to the large signal and small signal enable/disable time. The enable and disable times are accurately modeled but the enable overshoot does not match the data sheet specifications.

FIGURE 2. HFA1149 AC TRANSFER FUNCTIONS

FIGURE 4. HFA1149 INVERTING LARGE SIGNAL PULSE RESPONSE

FIGURE 6. HFA1149 INVERTING SMALL SIGNAL PULSE RESPONSE

FIGURE 3. HFA1149 NON-INVERTING LARGE SIGNAL PULSE RESPONSE

FIGURE 5. HFA1149 NON-INVERTING SMALL SIGNAL PULSE RESPONSE

FIGURE 7. HFA1149 OFF-ISOLATION WITH $A_{V}=2$

FIGURE 8. HFA1149 LARGE SIGNAL ENABLE/DISABLE TIME WITH $A_{V}=2$ AND $V_{I N}=1 V$

Summary

The macromodel performs well for both the DC and AC parameters. It is a fraction of a dB off for some AC tests, but this is acceptable for an approximation. At least the model has peaking where the op amp has peaking, and the response for different gains is modeled correctly. The model is just an approximation! It cannot predict performance to a few percent; especially when one considers that the circuit layout parameters have such a large effect on high frequency performance. The model will not predict the actual performance in many circumstances such as non-linearities, limits of performance, or extended range operation. Only testing will confirm performance out of the normal operating range, and all circuits should be tested to confirm the model's predictions.

FIGURE 9. HFA1149 SMALL SIGNAL ENABLE/DISABLE TIME WITH $A_{V}=2$ AND $V_{I N}=0.1 \mathrm{~V}$

License Statement

The information in these SPICE macromodels (models) is protected by the United States copyright laws. Intersil Corporation (Intersil) hereby grants users of these models, herein referred to as licensee, a nonexclusive, nontransferable license to use these models as long as the licensee abides by the terms of this agreement. Before using the models, the licensee should read this license and accept the terms.
The licensee may not sell, loan, rent, lease, or license the models, in whole, in part, or in modified form, to anyone outside the licensee's company. The licensee may modify these models to suit his specific application.
These models are provided "AS IS, WHERE IS, AND WITH NO WARRANTY OF ANY KIND EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE." In no event will Intersil be liable for special, collateral, incidental, or consequential damages in connection with or arising out of the use of these models. Intersil reserves the right to make changes to the products and the models without prior notice.

All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems.
Intersil Corporation's quality certifications can be viewed at www.intersil.com/design/quality

[^0]For information regarding Intersil Corporation and its products, see www.intersil.com

[^0]: Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

